Base
Types
Functions
LUSE_ENGR701_704_NumericalMethods.condition_number
— Methodcondition_number(A)
Find the condition number of matrix, A
.
Notes
Definition [burdenNumericalAnalysis2016]_: The condition number of the non-singular matrix, $\mathbf{A}$ relative to a norm, ||⋅|| is
\[ K(\mathbf{A}) = ||\mathbf{A}|| ⋅ ||\mathbf{A}^{-1}||\]
A matrix is well-conditioned if $K(\mathbf{A})$ is close to 1 and is ill-conditioned if significantly greater than 1.
LUSE_ENGR701_704_NumericalMethods.diagonality
— Methoddiagonality(A)
Determines whether matrix, A
is strictly, diagonally dominant.
LUSE_ENGR701_704_NumericalMethods.positive_definite
— Functionpositive_definite(A)
Determines whether matrix, A
is positive definite.
LUSE_ENGR701_704_NumericalMethods.spectral_radius
— Functionspectral_radius(A)
Finds the spectral radius of matrix, A
.
Notes
$ρ(\mathbf{A}) = \max|λ|$, where λ is the set of eigvalsvalues for A
[burdenNumericalAnalysis2016]_.
LUSE_ENGR701_704_NumericalMethods.symmetry
— Methodsymmetry(A)
Determines whether matrix, A
is symmetric.
LUSE_ENGR701_704_NumericalMethods.tridiagonality
— Methodtridiagonality(A)
Determine whether matrix, A
is tridiagonal.